Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microchem J ; 184: 108195, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2120441

ABSTRACT

To reduce the progression of the viral process in patients infected with COVID-19, new treatments and drug active substances are needed. One of these drugs is Molnupiravir (MNP) which has a direct antiviral effect and has also proven to be highly effective in reducing the azopharyngeal SARS-CoV-2 infectious virus and viral RNA. Due to the importance and frequent use of this drug in the treatment of COVID-19, its accurate, quick, and cheap detection in pharmaceutical or biological samples is crucial. In this work, electrochemical behavior and sensitive voltammetric determination of MNP are described using a magnetite nanoparticle modified carbon paste electrode (Fe3O4@CPE) for the first time. Fe3O4 nanoparticles (NPs) were characterized by recording their transmission electron microscopy (TEM) images, energy dispersive X-ray (EDX), and X-ray diffraction (XRD) spectra. Cyclic voltammetric measurements showed that MNP was irreversibly oxidized at Fe3O4@CPE at 760 mV in pH 2.0 Britton Robinson buffer solution (BRBS). The peak current of MNP was increased approximately threefold at Fe3O4@CPE compared to bare CPE due to a good electrocatalytic efficiency of Fe3O4 NPs. According to differential pulse voltammetric studies, the fabricated electrode exhibited a linear range (LR) between 0.25 and 750 µM with sensitivity and limit of detection (LOD) of 4591.0 µA mM-1 cm-2 and 0.05 µM, respectively. On the other hand, although lower sensitivity (327.3 µA mM-1 cm-2) was obtained from CV compared to DPV, a wider linear calibration curve between 0.25 and 1500 µM was obtained in CV. Studies performed in tablet samples confirmed that the Fe3O4@CPE exhibits high applicability for selective and accurate voltammetric determination of MNP in real samples.

SELECTION OF CITATIONS
SEARCH DETAIL